如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足

如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF//AC交DE的延长线于点F,连接CF。(1)求证:AD⊥CF(2)连接A... 如图,在等腰RT△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF//AC交DE的延长线于点F,连接CF。

(1)求证:AD⊥CF

(2)连接AF,试判断△ACF的形状,并说明理由。

详细点!
展开
落_花_飞_雪
推荐于2016-12-01 · TA获得超过3604个赞
知道小有建树答主
回答量:476
采纳率:0%
帮助的人:0
展开全部
(1)
因为DE⊥AB
所以角FDB=45°
又BF平行AC
得到三角形DBF是等腰直角三角形
所以BD=BF
由AC=BC
所以三角形ACD和CBF全等
所以角CAD=角FCB
角CAD+角ADC=角FCB+角ADC=90°
得证
(2)
由于DBF是等腰直角三角形,BE垂直于DF
所以DE=EF
所以直角三角形ADE和AFE全等
AD=AF
上面得到AD=CF
所以AF=CF
三角形ACF为等腰三角形
GamryRaman
2023-06-12 广告
N沟道耗尽型MOS管工作在恒流区时,g极与d极之间的电位有固定的大小关系。这是因为当MOS管工作在恒流区时,由于源极和漏极电压相等,G极电压(即源极电压)为0,而D极电压(即漏极电压)受栅极电压控制。由于G极电压为0,因此在恒流区时,D极电... 点击进入详情页
本回答由GamryRaman提供
帐号已注销
2012-09-14 · TA获得超过1006个赞
知道答主
回答量:146
采纳率:0%
帮助的人:73.5万
展开全部
1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,
BF=CD∠CBF=∠ACD=90°CB=AC

∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF
(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∴CF=AF,
∴△ACF是等腰三角形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
豁达的猫
2012-10-08 · TA获得超过259个赞
知道答主
回答量:29
采纳率:0%
帮助的人:14.9万
展开全部
(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.(2分)
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,BF=CD∠CBF=∠ACD=90°CB=AC​,
∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.(6分)

(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∴CF=AF,
∴△ACF是等腰三角形.(10分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
天翔之恋
2012-12-19
知道答主
回答量:29
采纳率:0%
帮助的人:12.4万
展开全部
(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.(2分)
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,BF=CD∠CBF=∠ACD=90°CB=AC​,
∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.(6分)

(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.(10分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2012-10-02
展开全部
(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.(2分)
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,

BF=CD∠CBF=∠ACD=90°CB=AC


∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.(4分)
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.(6分)

(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,(8分)
∴CF=AF,
∴△ACF是等腰三角形
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式