(2007?福州质检)如图,在直角三角形ABC中,∠ACB=90°,分别以AB、AC为底边向三角形ABC的外侧作等腰三

(2007?福州质检)如图,在直角三角形ABC中,∠ACB=90°,分别以AB、AC为底边向三角形ABC的外侧作等腰三角形ABD和ACE,且AD⊥AC,AB⊥AE,DE和... (2007?福州质检)如图,在直角三角形ABC中,∠ACB=90°,分别以AB、AC为底边向三角形ABC的外侧作等腰三角形ABD和ACE,且AD⊥AC,AB⊥AE,DE和AB相交于F.试探究线段FD、FE的数量关系,并加以证明. 展开
 我来答
大师的撒的0014
推荐于2016-12-01 · 超过55用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:147万
展开全部
FD=FE,
证明:过点D作DN⊥AB于N,连接NE.
∵DA=DB,DN⊥AB,
∴BN=AN,
过N作NE⊥AC,于点G,连接EG,
∴∠NGA=90°,
∵∠BCA=90°,
∴NG∥BC,
∵BN=AN,
∴CG=GA,
∵CE=AE,
∴EG⊥AC,
∴N、G、E在一条直线上,
∵DA⊥CA,NE⊥AC,
∴NE∥AD,
又∵DN⊥AB,EA⊥BA,
∴DN∥EA,
∴四边形DNEA是平行四边形,
∴DF=EF(平行四边形对角线互相平分).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式