如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B. (1)求⊙M的半径及圆心
如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B.(1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析式;(3)...
如图,在平面直角坐标系中,已知A(8,0),B(0,6),⊙M经过原点O及点A、B. (1)求⊙M的半径及圆心M的坐标;(2)过点B作⊙M的切线l,求直线l的解析式;(3)∠BOA的平分线交AB于点N,交⊙M于点E,求点N的坐标和线段OE的长.
展开
解:(1)∵∠AOB=90°,∴AB为⊙M的直径。 ∵A(8,0),B(0,6),∴OA=8,OB=6。 ∴ 。 ∴⊙M的半径为5;圆心M的坐标为((4,3)。 (2)如图,设点B作⊙M的切线l交x轴于C, ∵BC与⊙M相切,AB为直径,∴AB⊥BC。 ∴∠ABC=90°,∴∠CBO+∠ABO=90°。 ∵∠BAO+∠ABO=90°,∴∠BAO=∠CBO。 ∴Rt△ABO∽Rt△BCO。 ∴ ,即 ,解得 。 ∴C点坐标为( ,0)。 设直线BC的解析式为y=kx+b, 把B(0,6)、C点( ,0)分别代入得 ,解得 。 ∴直线l的解析式为y= x+6。 (3)如图,作ND⊥x轴,连接AE, ∵∠BOA的平分线交AB于点N,∴△NOD为等腰直角三角形。 ∴ND=OD。∴ND∥OB。∴△ADN∽△AOB。 ∴ND:OB=AD:AO,∴ND:6=(8﹣ND):8,解得ND= 。 ∴OD= ,ON= ND= 。 ∴N点坐标为( , )。 ∵△ADN∽△AOB,∴ND:OB=AN:AB,即 :6=AN:10,解得AN= 。 ∴BN=10﹣ = 。 ∵∠OBA=OEA,∠BOE=∠BAE,∴△BON∽△EAN。 ∴BN:NE=ON:AN,即 :NE= : ,解得NE= 。 ∴OE=ON+NE= + = 。 |
(1)根据圆周角定理∠AOB=90°得AB为⊙M的直径,则可得到线段AB的中点即点M的坐标,然后利用勾股定理计算出AB=10,则可确定⊙M的半径为5。 (2)点B作⊙M的切线l交x轴于C,由切线的性质得AB⊥BC,由等角的余角相等得到∠BAO=∠CBO,根据相似三角形的判定方法有Rt△ABO∽Rt△BCO,所以 ,可解得 ,则C点坐标为( ,0),最后运用待定系数法确定l的解析式。 (3)作ND⊥x轴,连接AE,易得△NOD为等腰直角三角形,所以ND=OD,ON= ND,再利用ND∥OB得到△ADN∽△AOB,则ND:OB=AD:AO,即ND:6=(8﹣ND):8,解得ND= ,所以OD= ,ON= ,即可确定N点坐标;由于△ADN∽△AOB,利用ND:OB=AN:AB,可求得AN= ,则BN=10﹣ = ,然后利用圆周角定理得∠OBA=OEA,∠BOE=∠BAE,所以△BON∽△EAN,再利用相似比可求出ME,最后由OE=ON+NE计算即可。 |
收起
为你推荐: