已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把
已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数...
已知二次函数y=x2-2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?
展开
展开全部
解答:(1)证明:∵△=(-2m)2-4×1×(m2+3)=4m2-4m2-12=-12<0,
∴方程x2-2mx+m2+3=0没有实数解,
即不论m为何值,该函数的图象与x轴没有公共点;
(2)解:y=x2-2mx+m2+3=(x-m)2+3,
把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),
因此,这个函数的图象与x轴只有一个公共点,
所以,把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.
∴方程x2-2mx+m2+3=0没有实数解,
即不论m为何值,该函数的图象与x轴没有公共点;
(2)解:y=x2-2mx+m2+3=(x-m)2+3,
把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),
因此,这个函数的图象与x轴只有一个公共点,
所以,把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.
展开全部
(1)证明:∵△=(-2m)2-4×1×(m2+3)=4m2-4m2-12=-12<0,
∴方程x2-2mx+m2+3=0没有实数解,=(x-m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的 顶点坐标是(m,0),
因此,这个函数的图,
即不论m为何值,该函数的图象与x轴没有公共点;
(2)解:y=x2-2mx+m2+3=(x-m)2+3,
把函数yx轴只有一个公共点,
所以,把函数y=x2-2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.
∴方程x2-2mx+m2+3=0没有实数解,=(x-m)2+3的图象延y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的 顶点坐标是(m,0),
因此,这个函数的图,
即不论m为何值,该函数的图象与x轴没有公共点;
(2)解:y=x2-2mx+m2+3=(x-m)2+3,
把函数yx轴只有一个公共点,
所以,把函数y=x2-2mx+m2+3的图象延y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询