已知a<2,函数f(x)=(x2+ax+a)ex(1)当a=1时,求f(x)的单调递增区间;(2)若f(x)的极大值是6?e
已知a<2,函数f(x)=(x2+ax+a)ex(1)当a=1时,求f(x)的单调递增区间;(2)若f(x)的极大值是6?e-2,求a的值....
已知a<2,函数f(x)=(x2+ax+a)ex(1)当a=1时,求f(x)的单调递增区间;(2)若f(x)的极大值是6?e-2,求a的值.
展开
1个回答
展开全部
(1)当a=1时,f(x)=(x2+x+1)ex,
∴f′(x)=(x2+3x+2)ex,
由f′(x)≥0,得x≤-2,或x≥-1,
∴f(x)的增区间为(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex,
由f′(x)=0,得x=-2,或x=-a,
列表讨论,得:
∴x=-2时,f(x)取得极大值,
又f(-2)=(4-a)?e2,f(x)的极大值是6?e-2,
∴(4-a)?e2=6?e-2,解得a=-2.
∴a的值为-2.
∴f′(x)=(x2+3x+2)ex,
由f′(x)≥0,得x≤-2,或x≥-1,
∴f(x)的增区间为(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex,
由f′(x)=0,得x=-2,或x=-a,
列表讨论,得:
x | (-∞,-2) | -2 | (-2,-a) | -a | (-a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
又f(-2)=(4-a)?e2,f(x)的极大值是6?e-2,
∴(4-a)?e2=6?e-2,解得a=-2.
∴a的值为-2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询