数列中已知an和sn的关系求an有几种处理方向
通常两种:
1)将an=Sn-S(n-1), 代入an与sn的关系,得到关于Sn与S(n-1)的递推方程,再求解出Sn;
2)将Sn=f(an);
S(n-1)=f(a(n-1));
相减得:an=f(an)-f(a(n-1)), 得到关于an, a(n-1)的递推方程,再求解出an。
按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。
扩展资料:
数列的函数理解:
①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
对于正项数列:(数列的各项都是正数的为正项数列)
1)从第2项起,每一项都大于它的前一项的数列叫做递增数列;如:1,2,3,4,5,6,7;
2)从第2项起,每一项都小于它的前一项的数列叫做递减数列;如:8,7,6,5,4,3,2,1;
3)从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列(摇摆数列);
(3)周期数列:各项呈周期性变化的数列叫做周期数列(如三角函数);
(4)常数数列:各项相等的数列叫做常数数列(如:2,2,2,2,2,2,2,2,2)。
参考资料:百度百科---数列通项公式
2023-08-01 广告
1)将an=Sn-S(n-1), 代入an与sn的关系,得到关于Sn与S(n-1)的递推方程,再求解出Sn.
2)将Sn=f(an),
S(n-1)=f(a(n-1))
相减得:an=f(an)-f(a(n-1)), 得到关于an, a(n-1)的递推方程,再求解出an.
高中数学新课标人教A版(必修5)第二章 数列 等差数列前n项和类型二 已知an与sn的关系求通项公式