完备空间的例子
1个回答
展开全部
有理数空间不是完备的,因为√2的有限位小数表示是一个柯西序列,但是其极限√2不在有理数空间内。实数空间是完备的开区间(0,1)不是完备的。序列(1/2, 1/3, 1/4, 1/5, ...)是柯西序列但其不收敛到任何(0, 1)中的点,令S为任一集合,S为S中的所有序列,定义S上序列(xn)和(yn)的距离为1/N,其中若的最小索引存在则N为该索引否则N为0。按此方式定义的度量空间是完备的。该空间同胚于离散空间S的可数个副本的积。
在数学及其相关领域中,一个对象具有完备性,即它不需要添加任何其他元素,这个对象也可称为完备的或完全的。更精确地,可以从多个不同的角度来描述这个定义,同时可以引入完备化这个概念。但是在不同的领域中,“完备”也有不同的含义,特别是在某些领域中,“完备化”的过程并不称为“完备化”,另有其他的表述,请参考代数闭域、紧化(compactification)或哥德尔不完备定理。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询