曲面积分的关系
两种积分之间的转化在于如何将空间曲面在坐标平面上投影;
设dS是积分曲面Σ上的面积元素。
设Σ的方程为z=(x,y),Σ在xOy平面上的投影区域D是有界闭区域,z=(x,y)在D上具有连续的偏导数,于是:
dS/(dxdy)=1/cosθ,θ是面积元素dS和坐标平面的夹角;
积分曲面Σ上任意一点的法向量为(∂z/∂x,∂z/∂y,-1)(注:〥表示求偏导数,〥z/〥x表示z对x偏导数,是整体符号,下同),xOy平面的法向量取(0,0,1);
于是1/cosθ=√[1+(∂z/∂x)^2+(∂z/∂y)^2];
所以dS=√[1+(∂z/∂x)^2+(∂z/∂y)^2]*dxdy,Σ上的点为(x,y,z(x,y))则∫∫f(x,y,z)dS存在,且在积分曲面Σ上的曲面积分有:
∫∫f(x,y,z)dS=∫∫f(x,y,z)*√[1+(∂z/∂x)^2+(∂z/∂y)^2]*dxdy
这样就把对面积的曲面积分和对坐标轴的曲面积分的关系联系起来了。
而对于∫∫P(x,y,z)dxdy+Q(x,y,z)dydz+R(x,y,z)dxdz这种类型的曲面积分,积分曲面可能需要同时向三个坐标平面 xOy,xOz,yOz投影,投影的方式和上面的方法一样。实际上如果面积元素dS与三个坐标平面的夹角分别为α,β,γ,则有dxdy=cosαdS;dxdz=cosβdS,dydz=cosγdS;
而α,β,γ的余弦是可以通过法向量的数量积求得的,所以可以写成:
∫∫P(x,y,z)dxdy+Q(x,y,z)dydz+R(x,y,z)dxdz=∫∫[P(x,y,z)cosα+Q(x,y,z)cosγ+R(x,y,z)cosβ]dS
在向各个坐标平面投影的时候需要注意dS的有向性,即夹角的大小,在夹角大于π/2的时候,其余弦值是负的。