sinA=2sinBsinC,求tanAtanBtanC最小值

锐角三角形... 锐角三角形 展开
 我来答
njhu0706
2016-06-16 · TA获得超过1903个赞
知道小有建树答主
回答量:607
采纳率:46%
帮助的人:179万
展开全部
答案应该是8,而不是3根号3。
做成3根号3,没用到条件sina=2sinbsinc,忽视了等号能否取到。
事实上,A、B、C都是60度时, sina=2sinbsinc不成立,不满足条件。
正确解答如下:
在锐角三ΔABC中
sinA=sin(B+C)=sinBcosC+cosBsinC
由已知sinBcosC+cosBsinC=2 sinBsinC
tanB+tanC=2tanBtanC (1)
tanA=-tan(B+C)=(tanB+tanC)/(tanBtanC-1)
tanA=(tanB+tanC)/(tanBtanC-1) (2)
其中tanA,tanB,tanC都是正数.
tanAtanBtanC
=((tanB+tanC)/(tanBtanC-1))tanBtanC
=(2tanBtanC/(tanBtanC-1))tanBtanC
=2(tanBtanC)²/(tanBtanC-1)
设 m=tanBtanC-1,则m>0
tanAtanBtanC=2(m+1)²/m
=2(m+(1/m))+4
≥4+2·2√(m·(/1m))
=8
当 m=tanBtanC-1=1 即tanBtanC=2时取"="
此时tanBtanC=2,tanB+tanC=4,tanA=4
所以 tanAtanBtanC的最小值是8
(在tanBtanC=2,tanB+tanC=4,tanA=4时取到)
灵德
2024-11-19 广告
由化工方面的博士、教授和企业的高级技术人员与管理人员创建的高科技化工企业。主要从事下列产品的开发、生产和相关的技术服务:▼高纯电子化学品(主要为高纯季铵碱 )▼季铵碱系列▼季铵盐系列▼季膦化合物系列▼相转移催化剂(PTC)▼均苯四甲酸 (P... 点击进入详情页
本回答由灵德提供
晴天雨丝丝
2016-06-07 · TA获得超过1.2万个赞
知道大有可为答主
回答量:1.1万
采纳率:88%
帮助的人:2527万
展开全部
我想问一下,A、B、C是不是锐角三角形的三个内角?
依三角恒等式“tanA+tanB+tanC=tanAtanBtanC”得,
tanAtanBtanC≤[(tanA+tanB+tanC)/3]³
=[(tanAtanBtanC)/3]³
tanAtanBtanC≥3√3.
∴A=B=C=60°时,
所求最小值为3√3。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式