曲线的渐近线怎么求?
设曲线 y=f(x)
如果 lim(x->+∞) [ f(x) - kx - b) = 0 或 lim(x->-∞) [ f(x) - kx - b) = 0
则 y=kx+b 是 曲线的斜渐近线。
求法:lim(x->+∞) f(x) / x = k, 且 lim(x->+∞) [ f(x) - kx] = b或 lim(x->-∞) f(x) / x = k, 且 lim(x->-∞) [ f(x) - kx] = b。
扩展资料
渐近线:
一种是垂直渐近线:这种渐近线的形式为x=a
也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可。
另一种是斜渐近线:这种渐近线的形式为y=kx+b
反映函数在无穷远点的性态。先求k,k=limf(x)/x,再求b,b=limf(x)-kx。极限过程都是x趋向于无穷大。
设曲线 y=f(x) ,
如果 lim(x->+∞) [ f(x) - kx - b) = 0 或 lim(x->-∞) [ f(x) - kx - b) = 0
则 y=kx+b 是 曲线的斜渐近线。
求法:lim(x->+∞) f(x) / x = k, 且 lim(x->+∞) [ f(x) - kx] = b或 lim(x->-∞) f(x) / x = k, 且 lim(x->-∞) [ f(x) - kx] = b。
扩展资料:
渐近线分为垂直渐近线、水平渐近线和斜渐近线。
需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。
对于抛物线来说,如果当 时, ( 或者 ),而且 一般为间断点,就把 叫做的垂直渐近线;
如果当 时, ,就把 叫做的水平渐近线。例如,y = 3是曲线y = + 3的水平渐近线;
如果当 时, ,其中a和b为常数,那么 就是 的一条斜渐近线。
参考资料:渐近线(曲线的渐近线)_百度百科
求x→b时使y→±∞,只要b≠±∞,那么x=b是垂直渐近线;
求x→±∞时y/x→c,只要c≠0且c≠±∞,再求x→±∞时y-cx→d,那么y=cx+d是斜渐近线。
xy=x^2,也就是x(y-x)=0,所以x=0或y=x,所以y = x+1/x的渐近线为x=0和y=x,其他的方程渐近线方法类似,也是求极限,但是可能会很复杂。