为什么sinx和cosx的区间在-1到1是只有在单位圆的时候才是这个区间吗?

 我来答
海超848
2019-05-15 · TA获得超过7667个赞
知道大有可为答主
回答量:6105
采纳率:82%
帮助的人:284万
展开全部
因为(-cosx)^2+(sinx)^2=1,对任意x,(-cosx,sinx)这个点对应的向量的模值始终为1 想象xy坐标平面上一条线段,一个端点在坐标轴原点保持不变,另一个端点是(-cosx,sinx),x从0开始逐渐变大。这条线段就绕着原点旋转,且长度不变,始终为1,也就是(-cosx,sinx)始终在单位圆上。
戢就语16
2019-05-15 · TA获得超过3167个赞
知道大有可为答主
回答量:4699
采纳率:89%
帮助的人:193万
展开全部
先求不定积分
∫1/sinx dx
=∫sinx/sin²xdx
=-∫1/sin²xdcosx
=-∫1/(1-cos²x)dcosx
=∫1/(cosx+1)(cosx-1)dcosx
=∫[1/(cosx-1)-1/(cosx+1)]/2dcosx
=[∫1/(cosx-1)dcosx-∫1/(cosx+1)dcosx]/2
=[∫1/(cosx-1)d(cosx-1)-∫1/(cosx+1)d(cosx+1)]/2
=(ln|cosx-1|-ln|cosx+1|)/2+C
=ln√|(cosx-1)/(cosx+1)|+C
=ln√|(cosx-1)²/(cosx+1)(cosx-1)|+C
=ln√|(cosx-1)²/(cos²x-1)|+C
=ln√|-(cosx-1)²/sin²x|+C
=ln|(cosx-1)/sinx|+C
=ln|tan(x/2)|+C
根据瑕积分的定义,可知x=0为瑕点
所以∫(-1,1)上的定积分
=∫(-1,ξ)+ ∫(ξ,1),且ξ→0
所以原式
=lim ξ→0 ln|ξ|-lntan(1/2)+lntan(1/2)-ln|ξ|
=-∞-(-∞)
=不存在
∞不是一个数,不能进行运算,这个只能算出是不存在,但无法算出具体值,所以这个积分是发散的。或者说ln0本身就是无定义发散的,积分本身就是不存在的,两者不能进行加减运算。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式