证明:一个三角形的两个角的角平分线相等,这个三角形是等腰三角形。

 我来答
徭来福逄衣
2020-04-20 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:33%
帮助的人:668万
展开全部
主要是用反证法
已知,△ABC中,BD,CE是角平分线,若BD=CE,
求证:AB=AC
证明:设AB<AC,则∠ABC>∠ACB,(同一三角形中,大角对大边)
从而∠ABD>∠ACE.
在∠ABD内作∠DBF=∠ACE,
则在△FBC中,∠FBC>∠FCB,
得:FB<FC.
在CF上取CH=BF,过H作HK∥BF交CE于K,
在△BFD和△CHK中,
BF=CH,∠BFD=∠CHK,∠FBD=∠HCK
∴△BFD≌△CHK
∴BD=CK<CE,与已知BD=CE矛盾.
又若AB>AC,同理可得BD>CE,也与BD=CE矛盾
所以假设错误.
∴AB=AC
即三角形ABC中角A和角B的平分线相等,
则三角形是等腰三角形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式