高中数学必修五等比数列的一道题
1个回答
展开全部
解:
sn=a1(q^n-1)/(q-1)
根据题意,即等式
a1(q^n-1)/(q-1)=2^n-1恒成立。
[a1/(q-1)]q^n-[a1/(q-1)]=2^n-1
a1/(q-1)=1
q=2
解得
a1=1
q=2
设数列{bn}
b1=a1^2=1
bn=an^2=[a1q^(n-1)]^2=2^[2(n-1)]=4^(n-1)
数列{bn}是以1为首项,4为公比的等比数列。
tn=b1+b2+...+bn=a1^2+a2^2+...+an^2
=(4^n-1)/(4-1)
=(4^n-1)/3
sn=a1(q^n-1)/(q-1)
根据题意,即等式
a1(q^n-1)/(q-1)=2^n-1恒成立。
[a1/(q-1)]q^n-[a1/(q-1)]=2^n-1
a1/(q-1)=1
q=2
解得
a1=1
q=2
设数列{bn}
b1=a1^2=1
bn=an^2=[a1q^(n-1)]^2=2^[2(n-1)]=4^(n-1)
数列{bn}是以1为首项,4为公比的等比数列。
tn=b1+b2+...+bn=a1^2+a2^2+...+an^2
=(4^n-1)/(4-1)
=(4^n-1)/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询