设函数f(x)=|x2-4x-5|,设集合A={x|f(x)≥5},B=(-∞,...

设函数f(x)=|x2-4x-5|,设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞﹚.判断A、B的关系并证明.... 设函数f(x)=|x2-4x-5|,设集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞﹚.判断A、B的关系并证明. 展开
 我来答
之朋桂兴生
2020-05-02 · TA获得超过3884个赞
知道大有可为答主
回答量:3091
采纳率:34%
帮助的人:418万
展开全部
解:集合A,B满足B⊊A,理由如下:
令f(x)=|x2-4x-5|=5,即x2-4x-5=5或x2-4x-5=-5,
解得x∈{2-14,0,4,2+14},
由于f(x)在(-∞,-1]和[2,5]上单调递减,
在[-1,2]和[5,+∞)上单调递增,因此A=(-∞,2-14]∪[0,4]∪[2+14,+∞).
由于2+14<6,2-14>-2,
∴B⊊A.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式