定积分和反常积分 25
1.∫1/[sinx*(x^0.5)]从0到pi/42.∫1/[(x^0.5)*lnx]从2到正无限这两个积分是定积分还是反常积分?如何判断?若是广义积分,证明其存在性...
1.∫1/[sinx*(x^0.5)] 从0到pi/4
2.∫1/[(x^0.5)*lnx] 从2到正无限
这两个积分是定积分还是反常积分?如何判断?若是广义积分,证明其存在性 展开
2.∫1/[(x^0.5)*lnx] 从2到正无限
这两个积分是定积分还是反常积分?如何判断?若是广义积分,证明其存在性 展开
2个回答
展开全部
这两个积分都是广义积分。平常说的定积分一般都是Riemann积分,它是对于有限区间上的有界函数的积分。而第一题中当x->0时,函数值->无穷,即x=0是一个瑕点,所以这是反常积分。由于1/[sinx*(x^0.5)]与1/x^1.5是x->0时的等价无穷大,而后者在零点可积,所以原积分存在。
第二题是无限区间上的广义积分,1/[(x^0.5)*lnx] 与1/x^(0.5+&)是x->无穷时的等价无穷小(其中&代表一个正的任意小量),而后者是可积的,所以原积分存在。
第二题是无限区间上的广义积分,1/[(x^0.5)*lnx] 与1/x^(0.5+&)是x->无穷时的等价无穷小(其中&代表一个正的任意小量),而后者是可积的,所以原积分存在。
2008-10-16
展开全部
这种问题在知道上比较难得到比较可靠的答案
建议去看看同济大学数学系《高等数学》高等教育出版社出版
或者明天找一个人多点的时间来,那样引起注意的机会比较大
建议去看看同济大学数学系《高等数学》高等教育出版社出版
或者明天找一个人多点的时间来,那样引起注意的机会比较大
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询