lnx从0到1的定积分是反常积分吗?有定值吗
2个回答
展开全部
明显的,被积函数在0附近是无界的,也就是0是瑕点,积分是有限区间上的反常积分。此积分是收敛的。
反常积分存在时的几何意义:函数与X轴所围面积存在有限制时,即便函数在一点的值无穷,但面积可求。
对于上下限均为无穷,或被积分函数存在多个瑕点,或上述两类的混合,称为混合反常积分。对混合型反常积分,必须拆分多个积分区间,使原积分为无穷区间和无界函数两类单独的反常积分之和。
扩展资料:
当x→+∞时,f(x)必为无穷小,并且无穷小的阶次不能低于某一尺度,才能保证收敛;当x→a+时,f(x)必为无穷大。且无穷小的阶次不能高于某一尺度,才能保证收敛;这个尺度值一般等于1,注意识别反常积分。
一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
参考资料来源:百度百科——反常积分
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询