矩阵平方的计算是什么?
1个回答
展开全部
矩阵平方的计算如下:
1、看它的秩是不是为1,如果为1的话那么就可以写成一行(a)乘以一列(b),也就是A=ab。因此A^2=a(ba)b,值得注意的是这里的ba是一个数,可以单独把它们提出来,即A^2=(ba)A。
2、是看它是否能够对角化,如果可以那么就存在可逆矩阵a,使得a^(-1)Aa=∧,这样A=a∧a^(-1),A^2=a∧a^(-1)a∧a^(-1)=a∧^2a^(-1)。
相关信息:
矩阵相乘最重要的方法是一般矩阵乘积,它只有在第一个矩阵的列数(column)和第二个矩阵的行数(row)相同时才有意义。一般单指矩阵乘积时,指的便是一般矩阵乘积。
一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑地集中到了一起,所以有时候可以简便地表示一些复杂的模型,如电力系统网络模型。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
大体有三种解法, 法一:看它的秩是否为1,若为1的话一定可以写成一行(a)乘一列(b),即A=ab.这样的话,A^2=a(ba)b,注意这里ba为一数,可以提出,即A^2=(ba)A; 法二:看他能否对角化,如果可以的话即存在可逆矩阵a,使...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询