tanx平方的不定积分是什么?
tanx的平方的不定积分如下图所示:
原式=S (sin x)^2/(cos x)^2 dx
=S [1-(cos x)^2]/(cos x)^2 dx
=S 1/(cos x)^2 dx - S 1dx
S 1dx = x + C
S 1/(cos x)^2 dx中
令 t=1/cos x
则 dx = (cos x)^2/sin x dt
即 dx = 1/{ t [(t^2 - 1)]^0.5 } dt
∴ S 1/(cos x)^2 dx
= S t^2 /{ t [(t^2 - 1)]^0.5 } dt
= S t /[(t^2 - 1)]^0.5 dt
= 1/2 S 1/[(t^2 - 1)]^0.5 d(t^2)
= (t^2 - 1)^0.5 + C
= [1/(cos x)^2 - 1]^0.5 + C= tan x + C
∴S (tan x)^2 dx= tan x - x + C
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而不存在不定积分。一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。
在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。