展开全部
求和:∑n/2ⁿ=?
解:设Sn=∑n/2ⁿ=1/2+2/2²+3/2³+4/2^4+.....+(n-1)/2^(n-1)+n/2ⁿ............①
上式两边同乘以1/2得:
(1/2)Sn=1/2²+2/2³+3/2^4+.......+(n-1)/2ⁿ+n/2^(n+1)............................②
①-②得:(1/2)Sn=(1/2)+1/2²+1/2³+1/2^4+.....+1/2ⁿ-n/2^(n+1)
=(1/2)[1-(1/2)ⁿ]/(1-1/2)-n/2^(n+1)=1-(1/2)ⁿ-n/2^(n+1);
∴Sn=2[1-(1/2)ⁿ]-[n/2^(n+2)]
故S=n→∞limSn=n→∞lim2[1-(1/2)ⁿ]-n→∞[n/2^(n+2)]
=2-n→∞[1/(n+2)2^(n+1)=2-0=2;
解:设Sn=∑n/2ⁿ=1/2+2/2²+3/2³+4/2^4+.....+(n-1)/2^(n-1)+n/2ⁿ............①
上式两边同乘以1/2得:
(1/2)Sn=1/2²+2/2³+3/2^4+.......+(n-1)/2ⁿ+n/2^(n+1)............................②
①-②得:(1/2)Sn=(1/2)+1/2²+1/2³+1/2^4+.....+1/2ⁿ-n/2^(n+1)
=(1/2)[1-(1/2)ⁿ]/(1-1/2)-n/2^(n+1)=1-(1/2)ⁿ-n/2^(n+1);
∴Sn=2[1-(1/2)ⁿ]-[n/2^(n+2)]
故S=n→∞limSn=n→∞lim2[1-(1/2)ⁿ]-n→∞[n/2^(n+2)]
=2-n→∞[1/(n+2)2^(n+1)=2-0=2;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询