求证:(sinA+sinB)÷sinC=sinA+cosA。在三角形中。
1个回答
展开全部
,sinc=(sina+sinb)/(cosa+cosb)
;c(cosa+cosb)=a+b
(b^2+c^2-a^2)/2b+(a^2+c^2-b^2)/2a=(a+b)
b^2a+c^2a-a^3+a^2b+c^2b-b^3=2a^2b+2ab^2
a^3+b^3+a^2b+ab^2=c^2(a+b)
(a+b)(a^2+b^2)=c^2(a+b)
所以
a^2+b^2=c^2
∠c=90°,
△是直角三角形
;c(cosa+cosb)=a+b
(b^2+c^2-a^2)/2b+(a^2+c^2-b^2)/2a=(a+b)
b^2a+c^2a-a^3+a^2b+c^2b-b^3=2a^2b+2ab^2
a^3+b^3+a^2b+ab^2=c^2(a+b)
(a+b)(a^2+b^2)=c^2(a+b)
所以
a^2+b^2=c^2
∠c=90°,
△是直角三角形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询