黎卡提方程
1个回答
展开全部
黎卡提方程是最简单的一类非线性方程,形如y'=P(x)y+Q(x)y+R(x)的方程称为黎卡提方程。1841年法国数学家刘维尔证明了黎卡提方程一般没有初等解法,但是很多实际问题与理论问题又迫切需要求得这个方程的解,这也使得这一方程成为世界著名难题。
黎卡提方程自从十七世纪黎卡提提出以来,历经三百多年一直未有一般解法,虽然有众多特例解法,但是都未能从根本上解决这个方程。刘维尔的工作使得人们的注意力开始转向微分方程解的定性研究、数值计算以及求近似解上。无论在微分方程的经典理论或在近代科学的有关分支,黎卡提方程均有重要应用。
黎卡提方程自从十七世纪黎卡提提出以来,历经三百多年一直未有一般解法,虽然有众多特例解法,但是都未能从根本上解决这个方程。刘维尔的工作使得人们的注意力开始转向微分方程解的定性研究、数值计算以及求近似解上。无论在微分方程的经典理论或在近代科学的有关分支,黎卡提方程均有重要应用。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询