在△ABC中,a,b,c分别为其内角A,B,C所对的边,且2acosC=2b-c 若a=1,求b+c的取值范围

 我来答
舒适还明净的海鸥i
2022-06-07 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.7万
展开全部
答:
三角形ABC中,2acosC=2b-c
根据正弦定理:a/sinA=b/sinB=c/sinC=2R
则有:
2sinAcosC=2sinB-sinC
=2sin(A+C)-sinC
=2sinAcosC+2cosAsinC-sinC
所以:
2cosAsinC=sinC>0
所以:cosA=1/2
解得:A=60°,B+C=120°
因为:a=1
则2R=b/sinB=c/sinC=a/sinA=1/sin60°=2/√3
所以:
b+c=(2√3/3)(sinB+sinC)
=(2√3/3)*2sin[(B+C)/2]*cos[(B-C)/2]
=(4√3/3)*sin60°*cos[(B-C)/2]
=2cos[(B-C)/2]
当B-C=0时,b+c=2
当B趋于120°,C趋于0°时,b+c趋于1
所以:b+c的取值范围是(1,2]
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式