解析几何题:圆
1个回答
展开全部
分类: 教育/科学 >> 科学技术
问题描述:
1.圆(x^2) +(y^2) -4x -4y -10=0 上的点到直线x+y-14=0的最大距离与最小距离差是——————————
2.若x,y 适合(x^2) + (y^2) -2x +4y =0 则x-y的最大值
3.若直线y=kx+2与圆(x-2)^2 +(y-3)^2 =1 有两个不同的交点,求k的取值范围———
解析:
1.先算圆心到直线的距离.
圆心(2,2)到直线的距离D=5*根号2
最大距离是D+R=8*根号2 最小距离是D-R=2*根号2
(当然,先由D可以判断直线是与圆相交)
2.R=根号5,圆心(1.-2)
当直线x-y=z与圆相切的时候x-y有最大值
圆心到直线的距离是根号5,可以算出,x-y=3+根号10 为最大值
3.直线与圆心距离小于R=1
由距离公式可以算出0<k<3/4
问题描述:
1.圆(x^2) +(y^2) -4x -4y -10=0 上的点到直线x+y-14=0的最大距离与最小距离差是——————————
2.若x,y 适合(x^2) + (y^2) -2x +4y =0 则x-y的最大值
3.若直线y=kx+2与圆(x-2)^2 +(y-3)^2 =1 有两个不同的交点,求k的取值范围———
解析:
1.先算圆心到直线的距离.
圆心(2,2)到直线的距离D=5*根号2
最大距离是D+R=8*根号2 最小距离是D-R=2*根号2
(当然,先由D可以判断直线是与圆相交)
2.R=根号5,圆心(1.-2)
当直线x-y=z与圆相切的时候x-y有最大值
圆心到直线的距离是根号5,可以算出,x-y=3+根号10 为最大值
3.直线与圆心距离小于R=1
由距离公式可以算出0<k<3/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询