如何用向量证明三角形三条中线交于一点?

 我来答
华源网络
2022-10-14 · TA获得超过5582个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:145万
展开全部
AD、BE、CF是△ABC的三条中线,用向量法求证:AD、BE、CF共点.
[证明]
令BE、CF相交于O,且BO=mOE、CO=nOF,其中m、n为非零实数.则:
向量BO=m向量OE、向量CO=n向量OF.
∴向量BC=向量OC-向量OB=向量BO-向量CO=m向量OE-n向量OF,
 向量FE=向量OE-向量OF.
显然有:向量BC=2向量FE,∴m向量OE-n向量OF=2(向量OE-向量OF),
∴(m-2)向量OE=(n-2)向量OF,而向量OE、向量OF不共线,∴m-2=n-2=0,
∴m=n=2,∴BO=2OE、CO=2OF.
令AD、BE相交于G,利用上述结论,则有:BG=2GE,又BO=2OE,且O、G都在线段BE上,
∴O、G重合,∴AD、BE、CF共点.,8,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式