高一数:设a为实数,函数f(x)=x^2+|2x-a|+1(x属于R)
高一数:设a为实数,函数f(x)=x^2+|2x-a|+1(x属于R)(1)讨论f(x)的奇偶性(详细过程)(2)当a=2时,求f(x)的最小值全部都要详细过程...
高一数:设a为实数,函数f(x)=x^2+|2x-a|+1(x属于R)
(1)讨论f(x)的奇偶性(详细过程)
(2)当a=2时,求f(x)的最小值
全部都要详细过程 展开
(1)讨论f(x)的奇偶性(详细过程)
(2)当a=2时,求f(x)的最小值
全部都要详细过程 展开
展开全部
(1)
f(-x)=(-x)^2+|-2x-a)|-1 =x^2+|2x+a|+1
-f(x)=-x^2-|2x-a|-1
当a=0时,f(-x)=x^2+|2x|+1,-f(x)=-x^2-|2x|-1
f(x)=f(-x)=-f(x),f(x)既是奇函数也是偶函数
当a≠0时,f(x)≠f(-x)≠-f(x),f(x)非奇非偶
(当f(x)=f(-x)时f(x)为偶函数,当f(x)=-f(-x)时f(x)为奇函数)
(2)
若a=2,f(x)=x^2+|2x-a|+1=x^2+2|x-1|+1
当x≥1时,f(x)=x^2+2|x-1|+1=x^2+2(x-1)+1=(x+1)^2-2
又函数f(x)=(x+1)^2-2对称轴为x=-1,且为下凸(即开口向上)函数,
故f(x)在x=-1右边为增函数,
当x≥1,f(x)有最小值f(1),f(1)=2;
当x≤1时,f(x)=x^2+2|x-1|+1=x^2-2(x-1)+1=(x-1)^2+2
又函数f(x)=(x-1)^2+2对称轴为x=1,且为下凸函数,
其在R范围内有最小值f(1),f(1)=2
综上,当a=2时,f(x)有最小值2.
f(-x)=(-x)^2+|-2x-a)|-1 =x^2+|2x+a|+1
-f(x)=-x^2-|2x-a|-1
当a=0时,f(-x)=x^2+|2x|+1,-f(x)=-x^2-|2x|-1
f(x)=f(-x)=-f(x),f(x)既是奇函数也是偶函数
当a≠0时,f(x)≠f(-x)≠-f(x),f(x)非奇非偶
(当f(x)=f(-x)时f(x)为偶函数,当f(x)=-f(-x)时f(x)为奇函数)
(2)
若a=2,f(x)=x^2+|2x-a|+1=x^2+2|x-1|+1
当x≥1时,f(x)=x^2+2|x-1|+1=x^2+2(x-1)+1=(x+1)^2-2
又函数f(x)=(x+1)^2-2对称轴为x=-1,且为下凸(即开口向上)函数,
故f(x)在x=-1右边为增函数,
当x≥1,f(x)有最小值f(1),f(1)=2;
当x≤1时,f(x)=x^2+2|x-1|+1=x^2-2(x-1)+1=(x-1)^2+2
又函数f(x)=(x-1)^2+2对称轴为x=1,且为下凸函数,
其在R范围内有最小值f(1),f(1)=2
综上,当a=2时,f(x)有最小值2.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询