求证f(x)=ax2+bx+c(a<0)在[-b/2a,正无穷大)是减函数 10
2个回答
展开全部
-b/2a是最值点的横坐标。又a<0,所以由图像知道:[-b/2a,+∞)上递减。
证明:设m、n属于[-b/2a,+∞)且m<n。只要证f(m)-f(n)>0即可。
f(m)-f(n)=a(m^2-n^2)+b(m-n)=a(m+n)(m-N)+b(m-n)=[a(m+n)+b](m-n)
由于m与n都大于-b/2a。故:m+n>-b/a。故a(m+n)<-b。所以a(m+n)+b<0,m-n<0。
所以f(m)-f(n)>0。得证。
证明:设m、n属于[-b/2a,+∞)且m<n。只要证f(m)-f(n)>0即可。
f(m)-f(n)=a(m^2-n^2)+b(m-n)=a(m+n)(m-N)+b(m-n)=[a(m+n)+b](m-n)
由于m与n都大于-b/2a。故:m+n>-b/a。故a(m+n)<-b。所以a(m+n)+b<0,m-n<0。
所以f(m)-f(n)>0。得证。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询