设β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α5,证明向量组β1,β2,β3,β4线性相关。
设β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1,证明向量组β1,β2,β3,β4线性相关。...
设β1=α1+α2,β2=α2+α3,β3=α3+α4,β4=α4+α1,证明向量组β1,β2,β3,β4线性相关。
展开
2个回答
展开全部
β1-β2+β3-β4=0
即存在不全为0的一组数1,-1,1,-1使得K1β1+K2β2+K3β3+K4β4=0,所以其线性相关。
即存在不全为0的一组数1,-1,1,-1使得K1β1+K2β2+K3β3+K4β4=0,所以其线性相关。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询