三角形ABC内部有一点P,使角PAB=10度,角PBA=20度,角PCA=30度,角PAC=40度,证明:三角形ABC使等腰三角形
3个回答
展开全部
一、辅助线:
1、过A点做射线AX使∠PAX = 10°,∠CAX = 30°;
2、过B点做射线BY使∠PBY= 20°,交PX于点M,交AC于点N。
二、证明:
1、由原题得知:∠APB = 150°,∠APC = 110°,∠BPC = 100°;
2、∠BAP = ∠MAP =10°,∠ABP = ∠MBP =20°,得出P点是△ABM内心,
所以∠AMP = ∠BMP =60°,推出∠BPM =100°=∠BPC,所以点M在PC上。
3、由以上推出∠BMP = ∠PMA =∠AMN = ∠NMC=60°,∠CAM = ∠ACM =30°
可以推出AN=CN且BN⊥AC;
4、所以AB=AC,△ABC是等腰三角形。
1、过A点做射线AX使∠PAX = 10°,∠CAX = 30°;
2、过B点做射线BY使∠PBY= 20°,交PX于点M,交AC于点N。
二、证明:
1、由原题得知:∠APB = 150°,∠APC = 110°,∠BPC = 100°;
2、∠BAP = ∠MAP =10°,∠ABP = ∠MBP =20°,得出P点是△ABM内心,
所以∠AMP = ∠BMP =60°,推出∠BPM =100°=∠BPC,所以点M在PC上。
3、由以上推出∠BMP = ∠PMA =∠AMN = ∠NMC=60°,∠CAM = ∠ACM =30°
可以推出AN=CN且BN⊥AC;
4、所以AB=AC,△ABC是等腰三角形。
展开全部
由原题得知:∠APB = 150°,∠APC = 110°,∠BPC = 100°;
2、∠BAP = ∠MAP =10°,∠ABP = ∠MBP =20°,得出P点是△ABM内心,
所以∠AMP = ∠BMP =60°,推出∠BPM =100°=∠BPC,所以点M在PC上。
3、由以上推出∠BMP = ∠PMA =∠AMN = ∠NMC=60°,∠CAM = ∠ACM =30°
可以推出AN=CN且BN⊥AC;
4、所以AB=AC,△ABC是等腰三角形。
2、∠BAP = ∠MAP =10°,∠ABP = ∠MBP =20°,得出P点是△ABM内心,
所以∠AMP = ∠BMP =60°,推出∠BPM =100°=∠BPC,所以点M在PC上。
3、由以上推出∠BMP = ∠PMA =∠AMN = ∠NMC=60°,∠CAM = ∠ACM =30°
可以推出AN=CN且BN⊥AC;
4、所以AB=AC,△ABC是等腰三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-03-27
展开全部
一、辅助线:
1、过A点做射线AX使∠PAX = 10°,∠CAX = 30°;
2、过B点做射线BY使∠PBY= 20°,交PX于点M,交AC于点N。
二、证明:
1、由原题得知:∠APB = 150°,∠APC = 110°,∠BPC = 100°;
2、∠BAP = ∠MAP =10°,∠ABP = ∠MBP =20°,得出P点是△ABM内心,
所以∠AMP = ∠BMP =60°,推出∠BPM =100°=∠BPC,所以点M在PC上。
3、由以上推出∠BMP = ∠PMA =∠AMN = ∠NMC=60°,∠CAM = ∠ACM =30°
可以推出AN=CN且BN⊥AC;
4、所以AB=AC,△ABC是等腰三角形。
1、过A点做射线AX使∠PAX = 10°,∠CAX = 30°;
2、过B点做射线BY使∠PBY= 20°,交PX于点M,交AC于点N。
二、证明:
1、由原题得知:∠APB = 150°,∠APC = 110°,∠BPC = 100°;
2、∠BAP = ∠MAP =10°,∠ABP = ∠MBP =20°,得出P点是△ABM内心,
所以∠AMP = ∠BMP =60°,推出∠BPM =100°=∠BPC,所以点M在PC上。
3、由以上推出∠BMP = ∠PMA =∠AMN = ∠NMC=60°,∠CAM = ∠ACM =30°
可以推出AN=CN且BN⊥AC;
4、所以AB=AC,△ABC是等腰三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询