等比数列{a(n)}各项为实数,公比为8,S5,S15,S10成等差数列,求证2S(5),S(10),S(20)-S(15)成等比数列 10
展开全部
设首项是a1,公比是q
S5+S10=2S15
(S中都乘有一项a1/1-q,由于等式两边都有在此略去!)
(1-q^5)+(1-q^10)=2(1-q^15)
q^5(2q^10-q^5+1)=0
∵q≠0
∴2q^10-q^5+1=0
∴q^5=1或-1/2
当q^5=1即q=1时
显然2S5=S10=S20-S10
成等比数列
当q^5=-1/2时
2S5(S20-S10)=2q^10(1-q^5)(1-q^10)=3/4*3/4=9/16
S10^2=(1-q^10)²=9/16
∴2S5(S20-S10)=S10^2
所以2S5,S10,S20-S10成等比数列
S5+S10=2S15
(S中都乘有一项a1/1-q,由于等式两边都有在此略去!)
(1-q^5)+(1-q^10)=2(1-q^15)
q^5(2q^10-q^5+1)=0
∵q≠0
∴2q^10-q^5+1=0
∴q^5=1或-1/2
当q^5=1即q=1时
显然2S5=S10=S20-S10
成等比数列
当q^5=-1/2时
2S5(S20-S10)=2q^10(1-q^5)(1-q^10)=3/4*3/4=9/16
S10^2=(1-q^10)²=9/16
∴2S5(S20-S10)=S10^2
所以2S5,S10,S20-S10成等比数列
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询