2个回答
2008-10-26
展开全部
这个样子可能可以:
A=PEQ 其中E是A的标准型,P,Q为可逆矩阵
那么A'=Q'E'P';
所以AA'=PEQQ'E'P';
设QQ'=(X Y)
(Z W)
其中X为r*r的矩阵且其轶也为r,因为它是可逆矩阵的一个分块。
所以上式可以化简为:
AA'=P(X O)Q
(0 0)
而PQ都是可逆的,所以
r(AA')=r(X O)
(0 0)
所以它就等于r。
可能看起来比较不爽,可是我也打不出来比较好的效果,凑和看吧。
也可能有比较简单的方法。就这样吧。
A=PEQ 其中E是A的标准型,P,Q为可逆矩阵
那么A'=Q'E'P';
所以AA'=PEQQ'E'P';
设QQ'=(X Y)
(Z W)
其中X为r*r的矩阵且其轶也为r,因为它是可逆矩阵的一个分块。
所以上式可以化简为:
AA'=P(X O)Q
(0 0)
而PQ都是可逆的,所以
r(AA')=r(X O)
(0 0)
所以它就等于r。
可能看起来比较不爽,可是我也打不出来比较好的效果,凑和看吧。
也可能有比较简单的方法。就这样吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询