1个回答
展开全部
由韦达定理得
x1+x2=5/2
x1x2=-1/2
(1)
x1²x2+x2²x1
=x1x2(x1+x2)
=(-1/2)·(5/2)
=-5/4
(2)
x1²+x2²-3x1x2
=(x1+x2)²-5x1x2
=(5/2)²-5·(-1/2)
=25/4 +5/2
=35/4
(3)
x2/x1+x1/x2
=(x2²+x1²)/(x1x2)
=[(x1+x2)²-2x1x2]/(x1x2)
=[(5/2)²-2·(-1/2)]/(-1/2)
=-29/2
(4)
|x1-x2|
=√[(x1+x2)²-4x1x2]
=√[(5/2)²-4·(-1/2)]
=√(33/4)
=√33/2
x1+x2=5/2
x1x2=-1/2
(1)
x1²x2+x2²x1
=x1x2(x1+x2)
=(-1/2)·(5/2)
=-5/4
(2)
x1²+x2²-3x1x2
=(x1+x2)²-5x1x2
=(5/2)²-5·(-1/2)
=25/4 +5/2
=35/4
(3)
x2/x1+x1/x2
=(x2²+x1²)/(x1x2)
=[(x1+x2)²-2x1x2]/(x1x2)
=[(5/2)²-2·(-1/2)]/(-1/2)
=-29/2
(4)
|x1-x2|
=√[(x1+x2)²-4x1x2]
=√[(5/2)²-4·(-1/2)]
=√(33/4)
=√33/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询