已知定义在R上奇函数f(x)=ax3+bx2+cx+d(a≠0),f(1)≠1;且当x∈[1,2]时,函数g(x)=f(x)x的值域

已知定义在R上奇函数f(x)=ax3+bx2+cx+d(a≠0),f(1)≠1;且当x∈[1,2]时,函数g(x)=f(x)x的值域为[-2,1].(1)求函数f(x)的... 已知定义在R上奇函数f(x)=ax3+bx2+cx+d(a≠0),f(1)≠1;且当x∈[1,2]时,函数g(x)=f(x)x的值域为[-2,1].(1)求函数f(x)的解析式;(2)判断函数f(x)在x∈[1,+∞)上的单调性(不需写出推理过程),并写出f(x)在其定义域上的单调区间;(3)讨论关于x的方程f(x)-t=0(t∈R)的根的个数. 展开
 我来答
堀江遥
推荐于2016-06-20 · 超过47用户采纳过TA的回答
知道答主
回答量:111
采纳率:66%
帮助的人:93.7万
展开全部
(1)由定义在R上奇函数f(x)=ax3+bx2+cx+d(a≠0),可得 b=d=0,故f(x)=ax3 +cx.
再由f(1)≠1可得a+c≠1.
当x∈[1,2]时,函数g(x)=
f(x)
x
=ax2+c,当a>0时,g(x)在[1,2]上是增函数,再根据它的值域为[-2,1],
可得 a+c=-2,4a+c=1,解得 a=1,c=-3,故f(x)=x3 -3.
当a<0时,g(x)=ax2+c 在[1,2]上是减函数,可得a+c=1,不满足a+c≠1,故舍去.
综上可得,f(x)=x3 -3.
(2)根据函数f(x)=x3 -3,可得在[1,+∞)是增函数.
令它的导数为f′(x)=3x2>0,可得x>0,或 x<0,故函数的增区间为(-∞,0)、(0,+∞),即此函数的增区间为(-∞,+∞),此函数无减区间.
(3)关于x的方程f(x)-t=0的根的个数,即函数y=f(x)与函数y=t 的交点的个数.
结合图象可得,函数y=f(x)与函数y=t 的交点的个数为1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式