已知函数f(x)=logax和g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R)的图象在X=2处的切线互相平行.(1
已知函数f(x)=logax和g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R)的图象在X=2处的切线互相平行.(1)求T的值;(2)设F(x)=g(x)-...
已知函数f(x)=logax和g(x)=2loga(2x+t-2),(a>0,a≠1,t∈R)的图象在X=2处的切线互相平行.(1)求T的值;(2)设F(x)=g(x)-f(x),当x∈[1,4]时,F(x)≥2恒成立,求A的取值范围.
展开
1个回答
展开全部
(I)∵f′(x)=
logae,g′(x)=
logae(3分)
∵函数f(x)和g(x)的图象在X=2处的切线互相平行,
∴f'(2)=g'(2)(5分)
∴
logae=
logae,
∴t=6(6分)
(II)∴F(x)=g(x)-f(x)=2loga(2x+4)-logax=loga
,x∈[1,4]
令 h(x)=
=4x+
+16,x∈[1,4]∵h′(x)=4?
=
,x∈[1,4]
∴当1≤x<2时,h′(x)<0,
当2<x≤4时,h′(x)>0.h(x)在[1,2)是单调减函数,在(2,4]是单调增函数.(9分)
∴h(x)min=h(2)=32,∴h(x)max=h(1)=h(4)=36
∴当0<a<1时,有F(x)min=loga36,当a>1时,有F(x)min=loga32.
∵当x∈[1,4]时,F(x)≥2恒成立,∴F(x)min≥2(10分)
∴满足条件的a的值满足下列不等式组
;①,或
②
不等式组①的解集为空集,解不等式组②得 1<a≤4
1 |
x |
4 |
2x+t?2 |
∵函数f(x)和g(x)的图象在X=2处的切线互相平行,
∴f'(2)=g'(2)(5分)
∴
1 |
2 |
4 |
2×2+t?2 |
∴t=6(6分)
(II)∴F(x)=g(x)-f(x)=2loga(2x+4)-logax=loga
(2x+4)2 |
x |
令 h(x)=
(2x+4)2 |
x |
16 |
x |
16 |
x2 |
4(x?2)(x+2) |
x2 |
∴当1≤x<2时,h′(x)<0,
当2<x≤4时,h′(x)>0.h(x)在[1,2)是单调减函数,在(2,4]是单调增函数.(9分)
∴h(x)min=h(2)=32,∴h(x)max=h(1)=h(4)=36
∴当0<a<1时,有F(x)min=loga36,当a>1时,有F(x)min=loga32.
∵当x∈[1,4]时,F(x)≥2恒成立,∴F(x)min≥2(10分)
∴满足条件的a的值满足下列不等式组
|
|
不等式组①的解集为空集,解不等式组②得 1<a≤4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|