2个回答
展开全部
三 f'(ax+b)=af'(ax+b), 设 f^(k)(ax+b)=a^k*f^(k)(ax+b) 成立,则
f^(k+1)(ax+b) = a^k*[f^(k)(ax+b)]‘ = a^k*af^(k+1)(ax+b)
= a^(k+1)*f^(k+1)(ax+b), 由归纳法原理,该题得证。
四 作变换 x=sint, 则 dy/dx=(dy/dt)/(dx/dt)=sectdy/dt,
d^2y/dx^2=d(dy/dx)/dx = [d(dy/dx)/dt]/(dx/dt)
= [(secttant)dy/dt+(sect)d^2y/dt^2]/cost, 代入原微分方程
(cost)[(secttant)dy/dt+(sect)d^2y/dt^2] - sintsectdy/dt + a^2y=0,
得 d^2y/dt^2+a^2y=0,
f^(k+1)(ax+b) = a^k*[f^(k)(ax+b)]‘ = a^k*af^(k+1)(ax+b)
= a^(k+1)*f^(k+1)(ax+b), 由归纳法原理,该题得证。
四 作变换 x=sint, 则 dy/dx=(dy/dt)/(dx/dt)=sectdy/dt,
d^2y/dx^2=d(dy/dx)/dx = [d(dy/dx)/dt]/(dx/dt)
= [(secttant)dy/dt+(sect)d^2y/dt^2]/cost, 代入原微分方程
(cost)[(secttant)dy/dt+(sect)d^2y/dt^2] - sintsectdy/dt + a^2y=0,
得 d^2y/dt^2+a^2y=0,
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询