如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结
如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2...
如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC= ,求BN的长.
展开
(1)证明见解析;(2)证明见解析;(3)BN= . |
试题分析:(1)根据切线的判定定理得出∠1+∠BCO=90°,即可得出答案; (2)利用已知得出∠3=∠2,∠4=∠D,再利用相似三角形的判定方法得出即可; (3)根据已知得出OE的长,进而利用勾股定理得出EC,AC,BC的长,即可得出CD,利用(2)中相似三角形的性质得出NB的长即可. (1)证明:∵△BCO中,BO=CO, ∴∠B=∠BCO, 在Rt△BCE中,∠2+∠B=90°, 又∵∠1=∠2, ∴∠1+∠BCO=90°, 即∠FCO=90°, ∴CF是⊙O的切线; (2)证明:如图,∵AB是⊙O直径, ∴∠ACB=∠FCO=90°, ∴∠ACB-∠BCO=∠FCO-∠BCO, 即∠3=∠1, ∴∠3=∠2, ∵∠4=∠D, ∴△ACM∽△DCN; (3)解:∵⊙O的半径为4,即AO=CO=BO=4, 在Rt△COE中,cos∠BOC= , ∴OE=CO?cos∠BOC=4× =1, 由此可得:BE=3,AE=5,由勾股定理可得: , , ∵AB是⊙O直径,AB⊥CD, ∴由垂径定理得:CD=2CE=2 , ∵△ACM∽△DCN, ∴ , ∵点M是CO的中点,CM= AO= ×4=2, ∴CN= , ∴BN=BC-CN=2 - = . |
收起
为你推荐: