已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).(1)若{an}是等差数列,且b3=
已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式...
已知数列{an}满足:a1=1,a2=a(a>0).数列{bn}满足bn=anan+1(n∈N*).(1)若{an}是等差数列,且b3=12,求a的值及{an}的通项公式;(2)若{an}是等比数列,求{bn}的前项和Sn.
展开
1个回答
展开全部
(1)∵{an}是等差数列,a1=1,a2=a(a>0),∴an=1+(n-1)(a-1).
又b3=12,∴a3a4=12,即(2a-1)(3a-2)=12,
解得a=2或a=-
,
∵a>0,∴a=2从而an=n.
(2)∵{an}是等比数列,a1=1,a2=a(a>0),∴an=an-1,则bn=anan+1=a2n-1.
=a2∴数列{bn}是首项为a,公比为a2的等比数列,
当a=1时,Sn=n;
当a≠1时,Sn=
=
.
又b3=12,∴a3a4=12,即(2a-1)(3a-2)=12,
解得a=2或a=-
5 |
6 |
∵a>0,∴a=2从而an=n.
(2)∵{an}是等比数列,a1=1,a2=a(a>0),∴an=an-1,则bn=anan+1=a2n-1.
bn+1 |
bn |
当a=1时,Sn=n;
当a≠1时,Sn=
a(1?a2n) |
1?a2 |
a2n+1?a |
a2?1 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询