高数题求解!!
展开全部
原式=∫dx/sinx(1+cosx)+∫dx/(1+cosx)
=∫[sin^2(x/2)+cos^2(x/2)]/4sin(x/2)cos^3(x/2)dx+∫dx/2cos^2(x/2)
=(1/4)*∫tan(x/2)*sec^2(x/2)dx+(1/2)*∫cscxdx+(1/2)*∫sec^2(x/2)dx
=(1/2)*∫tan(x/2)d[tan(x/2)]+(1/2)*ln|cscx-cotx|+tan(x/2)
=(1/4)*tan^2(x/2)+(1/2)*ln|cscx-cotx|+tan(x/2)+C,其中C是任意常数
=∫[sin^2(x/2)+cos^2(x/2)]/4sin(x/2)cos^3(x/2)dx+∫dx/2cos^2(x/2)
=(1/4)*∫tan(x/2)*sec^2(x/2)dx+(1/2)*∫cscxdx+(1/2)*∫sec^2(x/2)dx
=(1/2)*∫tan(x/2)d[tan(x/2)]+(1/2)*ln|cscx-cotx|+tan(x/2)
=(1/4)*tan^2(x/2)+(1/2)*ln|cscx-cotx|+tan(x/2)+C,其中C是任意常数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询