线性代数,为什么说“当齐次方程组有非零解的时候,有无穷多个解”?

 我来答
教育小百科达人
推荐于2019-08-24 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

齐次方程组的解,有2种情况:

1、有唯一解,且是零解;

2、有无穷多组解;(其中有一解是零解,其余是非零解)

因此当齐次方程组有非零解的时候,有无穷多个解,是正确的。

如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

扩展资料:

设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:

1、当r=n时,原方程组仅有零解;

2、当r<n时,有无穷多个解(从而有非零解)。

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

求解步骤:

1、对系数矩阵A进行初等行变换,将其化为行阶梯形矩阵;

2、若r(A)=r=n(未知量的个数),则原方程组仅有零解,即x=0,求解结束;

若r(A)=r<n(未知量的个数),则原方程组有非零解,进行以下步骤:

3、继续将系数矩阵A化为行最简形矩阵,并写出同解方程组;

4、选取合适的自由未知量,并取相应的基本向量组,代入同解方程组,得到原方程组的基础解系,进而写出通解。

富港检测技术(东莞)有限公司_
2024-04-02 广告
无穷解的条件分别是Ax=0无非零解时,则A为满秩矩阵。则Ax=b一定有解。Ax=0有无穷多解时,则A一定不为满秩矩阵。Ax=b的解得情况有无解和无穷多解。无解:R(A)≠R(A|b)。无穷解:R(A)等于R(A|b)。且不为满秩。Ax=b无... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
是你找到了我
高粉答主

2019-05-28 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:42.9万
展开全部

1、当齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一解,且因为齐次线性方程组常数项全为0,所以唯一解即是零解。

2、当齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解,从而有非零解。

故当齐次方程组有非零解的时候,就有无穷多个解。

齐次线性方程组解的性质:

1、若x是齐次线性方程组AX=0的一个解,则kx也是它的解,其中k是任意常数。

2、 若x,y是齐次线性方程组AX=0的两个解,则x+y也是它的解。

3、 对齐次线性方程组AX=0,若r(A)=r<n,则AX=0存在基础解系,且基础解系所含向量的个数为n-r,即其解空间的维数为n-r。

扩展资料:

齐次线性方程组的判定定理:

1、齐次线性方程组AX=0有非零解的充要条件是r(A)<n。即系数矩阵A的秩小于未知量的个数。

2、齐次线性方程组AX=0仅有零解的充要条件是r(A)=n。

参考资料来源:百度百科-齐次方程组

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zzllrr小乐
高粉答主

推荐于2017-12-16 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78792

向TA提问 私信TA
展开全部
齐次方程组的解,有2种情况:
1、有唯一解,且是零解
2、有无穷多组解(其中有一解是零解,其余是非零解)

因此当齐次方程组有非零解的时候,有无穷多个解,是正确的。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fhghjf55
2018-10-25
知道答主
回答量:2
采纳率:0%
帮助的人:1473
展开全部
打个比方,比如齐次方程组中先解出了一个非零解a。就是说那我们这组方程的所有方程。都可以根据这个解a得到0,

那么我们对这个解进行放大倍数。而这个方程组中的所有方程仍然的0,所以会有无穷个
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
注定爱上JM
高粉答主

2020-11-16 · 每个回答都超有意思的
知道答主
回答量:3
采纳率:0%
帮助的人:4114
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式