A/B测试最佳流程,可分成下面四个步骤,如图:
下面,对其中的每个步骤做下详细解释:
分析数据:分析现有原始版本的各项数据指标,如注册转化率等,比如说注册转化率仅有10%,针对这一转化率提出想法;
提出想法:比方说要改进注册流程,之前用户需要输入短信校验码,计划改成图片校验码,形成改进备选方案。有了该基本假设后,预估大概率可以提升转化率;
重要性排序:限于团队资源有限,无法把所有需求想法全部都去验证,这就需要做重要性排序,选择最重要的这几个改进方案去做A/B测试,接着进入第四步;
A/B测试:在这个过程中,我们要监测A/B测试数据,结果一般有两种,一是数据证明实验无效,一是证明实验有效。
我们经过大量测试发现,大部分进行的A/B测试实验,1/3被证明有效, 2/3被证明无效(与原始版本效果差别不大,或者比原始版本效果还坏)。这里需要大家注意,不是所有的实验都会被证明对指标增长有显著效果,如果是这样,我们就没有必要进行实验了。
如果遇到这种情况,需要告诉自己的团队成员不要灰心,正因为某些实验被证明无效,我们才会找到有效的增长方式。实验失败是大概率事件,我们最好的办法就是增加测试频率、持续测试,而非浅尝辄止,又回到经验主义决策的老路上。
如果你的团队从来没有做过A/B测试,有三点建议给到大家:
第一,从最简单的文案A/B测试开始,比如说测试关键按钮中不同文案的转化率;
第二,多做团队间的经验分享,多分享你的成功经验,有效果的事情大家都愿意尝试;不要天天去分享失败的经验,如果过多分享失败经验,会让你包括你的团队对A/B测试产生质疑,影响团队士气;
第三,可以优先使用第三方免费的A/B测试工具,比如Testin A/B测试,目前支持App、Web/H5、小程序。
以上就是A/B测试的最佳实践,有了这些流程,A/B测试落地还需要注意三个关键因素:
展开来说,在「人」的角度上,要求整个团队具备数据驱动增长、A/B测试驱动决策的思维习惯,这是最重要的事情。同时,如果增长或产品团队负责人本身不具备这种意识,认为A/B测试无关紧要,比较依赖经验进行产品优化决策,那么A/B测试做起来也很困难。
对APP也好,包括现在的小程序也好,新型产品层出不穷,产品面对的竞争也异常激烈。加之目前互联网流量红利期逐渐结束,获客成本增加,如果想继续获得业务增长,目前最有效的办法就是落地A/B测试、以数据驱动增长这一路径。行业发展趋势决定所有团队都会慢慢迁移到用科学的实验进行增长这条路上来,即使你现在的团队推进A/B测试困难,但是我相信不远的将来,A/B测试将是最重要的产品增长驱动力。
在业务流程上,第一需要注意你的产品是什么形态,是依托APP、小程序、公众号还是Web网站。不同的业务场景,A/B测试落地方案也会不一样。第二,要考虑A/B测试是否很好融入到了产品迭代或增长团队工作流程中去,最佳实践就是做到将整个产品优化迭代流程、发版节奏与A/B测试紧耦合,形成流水线作业,这也是BAT等公司能够把A/B测试每周频率做到那么高的原因。
在工具方面,一种是自研,另外一种是使用第三方服务。自研的话,在可控性、业务耦合方面有一定的优越性,但对一般企业来讲,其研发成本、人力成本很高,开发A/B测试服务还涉及到较为严格的数据统计,需要配置专业的数据分析师。如果使用目前市面上的第三方工具,比如Testin A/B测试服务_永久免费,可以最大化降低成本、加速业务落地A/B测试服务。
希望以上能对楼主有所帮助!
2023-06-12 广告
2017-12-18
• 收集数据:对产品进行数据分析可以让我们发现问题从而找到需要优化的方向。首先我们需要收集数据,可以从站点或APP高流量的区域开始,这有助于我们快速发现问题的关键所在。同时我们需要寻找能够改进的低转化率和高流失率的页面。
• 确定目标:我们的转换目标是用来衡量更新版是否比原始版用户体验更好,更成功的标准。目标可以是任何东西,如点击一个按钮、链接到产品购买或者完成注册等。
• 生成假设:一旦明确了目标,我们就可以生成A/B测试的假设,这个假设用来解释为什么我们觉得更新版比原始版更好。在有了这个假设清单之后,我们可以按照预期的结果和实施难度来按顺序进行测试。
• 创建变化:有了前面几步之后,我们就可以对我们的网站或APP做出期望的改变,设计出迭代方案,这些改变可以是按钮的颜色、页面元素的顺序交换、隐藏导航或者完全重新布局的东西。我们创建的这些变化要确保它们符合我们的预期目标。
• 运行实验:启动我们的实验,等待用户参与。在这一步,我们网站或APP的用户会被随机分配到控制组和测试组,用户每一步的操作都会被纪录采集,计算和比较,以确定控制组和测试组在每一项改变上的表现。
• 分析结果:实验完成之后就是结果分析。A/B测试会显示实验数据,并告诉我们两个版本的用户行为是否存在显著差异。
• 发布最佳版本:如果测试组的行为达到了我们的预期目标,那么我们就可以继续根据A/B测试结果进一步改进产品。反之,也不必气馁,我们可以把此次测试作为经验并且生成新的假设然后继续测试。
目前市面上的大部分A/B测试工具均不支持对流量进行计划分配即流量分配策略(一般为随机分配)。这样得到的测试结果,不仅不能真实的反映出目标核心用户的喜好还有可能给产品经理造成误导,对产品改进方向做出误判。在这推荐用户行为分析工具Cobub Razor,它可以帮我们准确的识别用户属性,从而为A/B测试提供流量分配策略,保证流量分配的科学性,试验结果的可信性。此外Cobub还提供了实验目标指标的实时监控及数据分析,我们可以根据分析结果实时优化调整流量策略,助力形成产品优化的闭环。