1个回答
展开全部
∫<0,1>(1-x)dx/(k+x)=∫<0,1>[-1+(1+k)/(1+x)]dx
=[-x+(1+k)ln(1+x)]|<0,1>
=-1+(1+k)ln2,
1/[2(k+1)]<-1+(1+k)ln2<1/(2k),
<==>-1/[2(k+1)]-1+(k+1)ln2>0,-1/(2k)-1+(k+1)ln2<0,k是自然数,
<==>-1-2k-2+2(k+1)^2*ln2>0,-1-2k+2k(k+1)ln2<0,
<==>2ln2*k^2+(4ln2-2)k+2ln2-3>0,①2ln2*k^2+(2ln2-2)k-1<0,②
k=1时①成立,故①对任意自然数k都成立。
对于②,△/4=(ln2-1)^2+2ln2=(ln2)^2+1,
{1-ln2-√[(ln2)^2+1]}/(2ln2)≈-0.6,
{1-ln2+√[(ln2)^2+1]}/(2ln2)≈1.1,
-0.6<k<1.1,
所以k=1.
=[-x+(1+k)ln(1+x)]|<0,1>
=-1+(1+k)ln2,
1/[2(k+1)]<-1+(1+k)ln2<1/(2k),
<==>-1/[2(k+1)]-1+(k+1)ln2>0,-1/(2k)-1+(k+1)ln2<0,k是自然数,
<==>-1-2k-2+2(k+1)^2*ln2>0,-1-2k+2k(k+1)ln2<0,
<==>2ln2*k^2+(4ln2-2)k+2ln2-3>0,①2ln2*k^2+(2ln2-2)k-1<0,②
k=1时①成立,故①对任意自然数k都成立。
对于②,△/4=(ln2-1)^2+2ln2=(ln2)^2+1,
{1-ln2-√[(ln2)^2+1]}/(2ln2)≈-0.6,
{1-ln2+√[(ln2)^2+1]}/(2ln2)≈1.1,
-0.6<k<1.1,
所以k=1.
追问
谢了,马上采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询