求a的逆矩阵
2个回答
展开全部
将一n阶可逆矩阵A和n阶单位矩阵I写成一个nX2n的矩阵B=[A|I]对B施行初等行变换,即对A与I进行完全相同的若干初等行变换,目标是把A化为单位矩阵。当A化为单位矩阵I的同时,B的右一半矩阵同时化为了A的逆矩阵。
如果矩阵A和B互逆,则AB=BA=I。由条件AB=BA以及矩阵乘法的定义可知,矩阵A和B都是方阵。再由条件AB=I以及定理“两个矩阵的乘积的行列式等于这两个矩阵的行列式的乘积”可知,这两个矩阵的行列式都不为0。
定理
(1)逆矩阵的唯一性。
若矩阵A是可逆的,则A的逆矩阵是唯一的,并记作A的逆矩阵为A-1。
(2)n阶方阵A可逆的充分必要条件是r(A)=m。
对n阶方阵A,若r(A)=n,则称A为满秩矩阵或非奇异矩阵。
(3)任何一个满秩矩阵都能通过有限次初等行变换化为单位矩阵。
推论 满秩矩阵A的逆矩阵A可以表示成有限个初等矩阵的乘积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |