已知数列{an},an+1=4Sn,求数列{an}的通项公式
2个回答
展开全部
对于数列,有一个隐性的公式:Sn-S(n-1)=an
an+1=4Sn
=>Sn=(an+1)/4
=>Sn-S(n-1)=(an+1)/4-[a(n-1)+1]/4=[an-a(n-1)]/4
=>an=[an-a(n-1)]/4
=>3an=-a(n-1)
=>an/a(n-1)=-1/3
且a1+1=4S1=4a1=>a1=1/3
即{an}是以1/3为首项,-1/3为公比的等比数列
an=(1/3)*(-1/3)^(n-1)=(-1)^(n-1)*3^(-n)
an+1=4Sn
=>Sn=(an+1)/4
=>Sn-S(n-1)=(an+1)/4-[a(n-1)+1]/4=[an-a(n-1)]/4
=>an=[an-a(n-1)]/4
=>3an=-a(n-1)
=>an/a(n-1)=-1/3
且a1+1=4S1=4a1=>a1=1/3
即{an}是以1/3为首项,-1/3为公比的等比数列
an=(1/3)*(-1/3)^(n-1)=(-1)^(n-1)*3^(-n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询