∫1-x/(√(4-9x^2)dx
2个回答
展开全部
∫1-x/(√(4-9x^2)dx
=∫1dx-∫x/(√(4-9x^2)dx
=x+C1-∫x/(√(4-9x^2)dx
下面来算
∫x/(√(4-9x^2)dx
=1/2
∫2x/(√(4-9x^2)dx
=1/2
∫1/(√(4-9x^2)d(x^2)
=1/4
∫1/(√(1-(9/4)x^2)d(x^2)
另3/2x=u
=1/4
∫1/(√(1-u^2)d(2/3
u)
=1/6
∫1/(√(1-u^2)du
=1/6arcsinu+C2
=1/6arcsin(3/2x)+C2
代入前式得x-1/6arcsin(3/2x)+C
就是最终结果
=∫1dx-∫x/(√(4-9x^2)dx
=x+C1-∫x/(√(4-9x^2)dx
下面来算
∫x/(√(4-9x^2)dx
=1/2
∫2x/(√(4-9x^2)dx
=1/2
∫1/(√(4-9x^2)d(x^2)
=1/4
∫1/(√(1-(9/4)x^2)d(x^2)
另3/2x=u
=1/4
∫1/(√(1-u^2)d(2/3
u)
=1/6
∫1/(√(1-u^2)du
=1/6arcsinu+C2
=1/6arcsin(3/2x)+C2
代入前式得x-1/6arcsin(3/2x)+C
就是最终结果
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询