高一数学题:已知二次函数f(x)=ax²+bx(a,b为常数,且a≠0)满足条件f(x-1)=f(3-x)且

高一数学题:已知二次函数f(x)=ax²+bx(a,b为常数,且a≠0)满足条件f(x-1)=f(3-x)且方程f(x)=2x有等根我是这样做到∵f(x-1)=... 高一数学题:已知二次函数f(x)=ax²+bx(a,b为常数,且a≠0)满足条件f(x-1)=f(3-x)且方程f(x)=2x有等根 我是这样做到 ∵f(x-1)=f(3-x) ∴b=-2a 又∵方程f(x)=2x有等根 往下就不会了 本人比较笨 讲的细心点 有高分悬赏 展开
风中的纸屑866
2014-10-05 · 公务员
风中的纸屑866
采纳数:15373 获赞数:52124

向TA提问 私信TA
展开全部
解:

由f(x-1)=f(3-x)
a(x-1)^2 +b(x-1)=a(3-x)^2 +b(3-x)
ax^2 +(b-2a)x+a-b=ax^2 -(6a+b)x+9a+3b
(b-2a+6a+b)x=9a+3b-a+b
(4a+2b)x=8a+4b
因x不为0,故:
4a+2b=8a+4b=0
即 b=-2a
所以 f(x)=ax^2 -2ax
由方程f(x)=2x有等根得:
ax^2 -2ax=2x
ax^2 -(2a+2)x=0
x[ax-(2a+2)]=0
x=0或(2a+2)/a
所以 0=(2a+2)/a
解得 a=-1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式