已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y属于R,等式f(x)f(y)=f(x+y)恒成立,

若数列{an}满足f(a(n+1)=1/f(-2-an)(n属于正整数),求a2011... 若数列{an}满足f(a(n+1)=1/f(-2-an)(n属于正整数),求a2011 展开
韩增民松
2014-08-28 · TA获得超过2.3万个赞
知道大有可为答主
回答量:5584
采纳率:40%
帮助的人:2739万
展开全部
已知函数y=f(x)的定义域为R,当x<0时,f(x)>1,且对任意的实数x,y属于R,等式f(x)f(y)=f(x+y)恒成立,若数列{an}满足a1=f(0),f(a(n+1)=1/f(-2-an)(n∈N*),求a2011

解析:∵对任意的实数x,y属于R,等式f(x)f(y)=f(x+y)恒成立,
令y=0,得f(x+0)=f(x)•f(0),∴f(0)=1
∵当x<0时,f(x)>1,
当x>0时,-x<0,f(0)=f(-x)•f(x)=1,∴0<f(x)<1.
设x1,x2∈R且x1<x2,
则x2-x1>0,0<f(x2-x1)<1,
f(x2)-f(x1)=f(x1+(x2-x1))-f(x1)=f(x1)[f(x2-x1)-1]<0.
∴f(x2)<f(x1),y=f(x)是R上的减函数.
∵数列{an}满足a1=f(0),f(a(n+1)=1/f(-2-an)(n∈N*),
a1=f(0)=1,
f(a(n+1))f(-2-an)=1,
∴f(a(n+1)-an-2)=f(0).
∴a(n+1)-an-2=0==>a(n+1)-an=2,
∴数列{an}是以1为首项,2为公差的等差数列.
an=1+2(n-1)=2n-1.
∴a2011=2*2011-1=4021.
熙因藏8365
推荐于2016-05-25 · 超过65用户采纳过TA的回答
知道答主
回答量:194
采纳率:0%
帮助的人:66.9万
展开全部
令x=y=0带入得到 f(0)f(0)=f(0)
所以f(0)(f(0)-1)=0
假如f(0)= 0; 那么对任意x f(x)f(0)=f(0+x)=f(x)=0 ,而x<0时,f(x)>1 矛盾
所以f(0)=1

令x>0,那么-x<0 f(-x)>1
又f(x)f(-x)=f(0)=1
所以0< f(x)=1/f(-x)<1
现在判断单调性:
任取x1<x2 ,显然x1-x2<0 f(x1-x2)>1
f(x2)f(x1-x2)=f(x1)
所以f(x1)/f(x2)=f(x1-x2)>1
f(x1)>f(x2)
f(x)是递减函数
这样可以么?
追问
已知函数y=f(x)的定义域为R,当x1,且对任意的实数x,y属于R,等式f(x)f(y)=f(x+y)恒成立若数列{an}满足f(a(n+1)=1/f(-2-an)(n属于正整数),求a2011我觉得主要是后面这个条件有用。。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式