![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知数列{an}满足a1=8,an+1-an=2n 则求an/n的最小值
展开全部
an+1-an=2n
an-an-1=2(n-1)
.....
a3-a2=4
a2-a1=2
相加,得
an-a1=2+4+...+2(n-1)=(n-1)n
an=n²-n+8
所以
an/n=n-1+8/n
=n+8/n-1
>=2根号8-1
即n=8/n时取最小值,但n是整数,
n在2√2两边。
n=2时
a2/2=2+4-1=5
n=3时
a3/3=3+8/3-1=4又3分之2
即
最小值=14/3
an-an-1=2(n-1)
.....
a3-a2=4
a2-a1=2
相加,得
an-a1=2+4+...+2(n-1)=(n-1)n
an=n²-n+8
所以
an/n=n-1+8/n
=n+8/n-1
>=2根号8-1
即n=8/n时取最小值,但n是整数,
n在2√2两边。
n=2时
a2/2=2+4-1=5
n=3时
a3/3=3+8/3-1=4又3分之2
即
最小值=14/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询