高数题,求解!
展开全部
let
x= tanu
dx= (secu)^2 du
∫ dx/√(x^2+1)
=∫ (secu)^2 du/secu
=∫ secu du
=ln|secu +tanu| +C
=ln|√(x^2+1) +x| +C
x= tanu
dx= (secu)^2 du
∫ dx/√(x^2+1)
=∫ (secu)^2 du/secu
=∫ secu du
=ln|secu +tanu| +C
=ln|√(x^2+1) +x| +C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2020-11-05 · 知道合伙人教育行家
关注
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询