设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(

设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a... 设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由(Ⅰ)设bn=Sn-3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围. 展开
 我来答
念你走1119
2014-12-10 · 超过51用户采纳过TA的回答
知道答主
回答量:101
采纳率:0%
帮助的人:124万
展开全部
(Ⅰ)依题意,Sn+1-Sn=an+1=Sn+3n,即Sn+1=2Sn+3n
由此得Sn+1-3n+1=2Sn+3n-3n+1=2(Sn-3n).(4分)
因此,所求通项公式为bn=Sn-3n=(a-3)2n-1,n∈N*.①(6分)
(Ⅱ)由①知Sn=3n+(a-3)2n-1,n∈N*
于是,当n≥2时,
an=Sn-Sn-1=3n+(a-3)×2n-1-3n-1-(a-3)×2n-2=2×3n-1+(a-3)2n-2
an+1-an=4×3n-1+(a-3)2n-2=2n?2[12?(
3
2
)
n?2
+a?3]

当n≥2时,an+1an?12?(
3
2
)n?2+a?3≥0
?a≥-9.
又a2=a1+3>a1
综上,所求的a的取值范围是[-9,+∞).(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式