设△ABC的三内角A,B,C所对的长分别为a,b,c,向量m=(a,b).向量n=(b,c),
1个回答
展开全部
解:
由题意,向量
m*n
=
(a,b)*(b,c)
=
ab+bc
=
2b²
==>
b(a+c-2b)
=0
三角形ABC中,显然边长
b≠0;
因此:a+c
=
2b
由正弦定理a/sinA
=
b/sinB
=c/sinC
=2R,可得
sinA
+
sinC
=2sinB;
==>
2sin[(A+C)/2]cos[(A-C)/2]
=
4sin(B/2)cos(B/2);
==>
2sin(π/2
-B/2)
cos(π/6)
=4sin(B/2)cos(B/2);
==>
cos(B/2)[4sin(B/2)
-
√3]=0;
三角形ABC
==>
0<
B
<π
==>
cos(B/2)
>0
∴
4sin(B/2)
-
√3
=
0
==>
sin(B/2)
=
√3/4
∴
cosB
=
1
-
2sin²(B/2)
=
5/8;
由题意,向量
m*n
=
(a,b)*(b,c)
=
ab+bc
=
2b²
==>
b(a+c-2b)
=0
三角形ABC中,显然边长
b≠0;
因此:a+c
=
2b
由正弦定理a/sinA
=
b/sinB
=c/sinC
=2R,可得
sinA
+
sinC
=2sinB;
==>
2sin[(A+C)/2]cos[(A-C)/2]
=
4sin(B/2)cos(B/2);
==>
2sin(π/2
-B/2)
cos(π/6)
=4sin(B/2)cos(B/2);
==>
cos(B/2)[4sin(B/2)
-
√3]=0;
三角形ABC
==>
0<
B
<π
==>
cos(B/2)
>0
∴
4sin(B/2)
-
√3
=
0
==>
sin(B/2)
=
√3/4
∴
cosB
=
1
-
2sin²(B/2)
=
5/8;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询