∫dy∫y^(1/3)cosx^5dx
1个回答
展开全部
积分域为x=y^(1/3), x=1, y=0围成的区域
即y=x³, x=1, y=0围成的区域
交换积分次序
∫(0,1)dy∫(y^(1/3),1) y^(1/3)cos(x^5) dx
=∫(0,1)dx∫(0,x³) y^(1/3)cos(x^5) dy
=∫(0,1) cos(x^5)*(3/4) [(x³)^(4/3)-0] dx
=(3/4)∫(0,1) cos(x^5)* x⁴ dx
=(3/4)*(1/5)sin(x^5)|(0,1)
=(3sin1)/20
即y=x³, x=1, y=0围成的区域
交换积分次序
∫(0,1)dy∫(y^(1/3),1) y^(1/3)cos(x^5) dx
=∫(0,1)dx∫(0,x³) y^(1/3)cos(x^5) dy
=∫(0,1) cos(x^5)*(3/4) [(x³)^(4/3)-0] dx
=(3/4)∫(0,1) cos(x^5)* x⁴ dx
=(3/4)*(1/5)sin(x^5)|(0,1)
=(3sin1)/20
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询